Follow us On YouTube Follow us On FaceBook



or
Search Language
Browse
Medical Animations
Medical Animation Titles
Custom Legal Animations
Patient Health Articles
Most Recent Uploads
Body Systems/Regions
Anatomy & Physiology
Diseases & Conditions
Diagnostics & Surgery
Cells & Tissues
Cardiovascular System
Digestive System
Integumentary System
Nervous System
Reproductive System
Respiratory System
Back and Spine
Foot and Ankle
Head and Neck
Hip
Knee
Shoulder
Thorax
Medical Specialties
Cancer
Cardiology
Dentistry
Editorial
Neurology/Neurosurgery
Ob/Gyn
Orthopedics
Pediatrics
Account
Administrator Login

Biology: Chemistry in Biology: 16: Proteins - Medical Animation

 

This animation may only be used in support of a single legal proceeding and for no other purpose. Read our License Agreement for details. To license this image for other purposes, click here.

Ready to License?

Item #NSV16038 — Source #1

Order by phone: (800) 338-5954

Biology: Chemistry in Biology: 16: Proteins - Medical Animation
MEDICAL ANIMATION TRANSCRIPT: So far we've covered two of the organic macromolecules: carbohydrates and lipids. Today, we'll be talking about proteins. Proteins have many uses. For example, many different proteins are used to form the majority of various body tissues including muscle, bone, cartilage, and hair. Other proteins form specialized channels in cell membranes to let certain substances into or out of the cell. Immunoglobulins, also known as antibodies, are made of proteins. They are an important part of the immune system. Antibody proteins label foreign substances in the body so that the immune system can identify and destroy them. And all living organisms use regulatory proteins called enzymes to speed up chemical reactions in the body. So what are proteins made of? Well, all proteins are organic macromolecules, which means they're large molecules containing the element carbon. Like carbohydrates and lipids, proteins also contain hydrogen and oxygen. In addition, proteins also contain the element nitrogen. So what is the structure of proteins? Well, the protein building block, or monomer, is something called an amino acid molecule. Every amino acid has a particular structure. They all have the same amino group on one side and a weak acid called a carboxyl group on the other. But each amino acid also has a unique side chain called an R-group. It's made up of one or more atoms that distinguish one amino acid from another. There are only 20 possible different R-groups, so that means there are only 20 possible different amino acids. A protein is created when amino acids chemically bond to each other. The bonds that connect amino acids to make a protein are called peptide bonds. Small protein molecules are sometimes referred to as protein polymers or peptides. Like interconnecting toy blocks, amino acids can join together to form even longer protein polymers called polypeptides. Changing the order of the amino acid sequence or the length of the polypeptide is what creates countless different proteins. In addition, a protein's final folded shape is critical to the function it performs. Heat or chemicals can change a protein's shape but not its amino acid order. However, the change in a protein's shape can cause the protein to lose its functionality. This is called denaturing a protein. Denaturing is usually not reversible. An example of denaturing a protein happens when you fry an egg. Egg whites are pure protein. If you heat an egg, the protein in the egg white becomes denatured. You can see the result of this denaturing as the egg white changes from a clear-colored liquid to a white-colored solid. Even after cooling, the egg whites' denatured proteins can't change back to their original shape. So the egg white retains its opaque white color and solid form. To sum up, proteins are organic macromolecules containing carbon, hydrogen, oxygen, and nitrogen. Enzymes, most body tissues, and many cells in the immune system are all made up of proteins. Amino acids are the monomers that make up proteins. There are only 20 different amino acids. Small protein polymer molecules are often called peptides. Long chains of amino acids are also a type of protein polymer called polypeptides. Proteins differ in amino acid sequence, polypeptide length, and folded shape. A protein's folded shape is critical to its function. ♪ [music] ♪

YOU MAY ALSO WANT TO REVIEW THESE ITEMS:
Biology: The Cell: 03: Structure - Structure of the Cell Membrane
Biology: The Cell: 03: Structure - Structure of the Cell Membrane - NSV15005
Medical Animation
Add to my lightbox
Find More Like This
Biology: The Cell: 01: Structure - Overview of Cell Structure
Biology: The Cell: 01: Structure - Overview of Cell Structure - NSV15001
Medical Animation
Add to my lightbox
Find More Like This
Muscle Fiber (Cell)
Muscle Fiber (Cell) - si55551586
Medical Illustration
Add to my lightbox
Find More Like This
Muscle Fiber (Cell)
Muscle Fiber (Cell) - si55551586-nl
Medical Illustration
Add to my lightbox
Find More Like This
Nerve Cell (Neuronal) Synapse with Muscle Fiber (Neuromuscular Junction)
Nerve Cell (Neuronal) Synapse with Muscle Fiber (Neuromuscular Junction) - si55551588
Medical Illustration
Add to my lightbox
Find More Like This
Biology: The Cell: 04: Cell Transport - Overview of Cell Transport
Biology: The Cell: 04: Cell Transport - Overview of Cell Transport - NSV15007
Medical Animation
Add to my lightbox
Find More Like This
What attorneys say about MLA and The Doe Report:
"We got a defense verdict yesterday! Your exhibit was extremely helpful in showing the jury how unlikely it is to damage all four of the nerve branches which control the sense of taste."

Karen M. Talbot
Silverman Bernheim & Vogel, P.C.
Philadeplphia, PA

"For us, the defining feature of effective demonstrative evidence is whether, by itself, the piece will tell the story of the case. Medical legal Art provides our firm with illustrations and animations that are clear and persuasive. Their exhibits tell the story in a way that allows the jury to understand a very complex subject, very quickly."

James D. Horwitz
Koskoff, Koskoff & Bieder, P.C.
Bridgeport, CT

"Thank you for the wonderful illustrations. The case resulted in a defense verdict last Friday. I know [our medical expert witness] presented some challenges for you and I appreciate how you were able to work with him."

Robert F. Donnelly
Goodman Allen & Filetti, PLLC
Richmond, VA

"It is with great enthusiasm that I recommend Medical Legal Art. We have used their services for three years and always found their professionalism, quality of work, and timely attention to detail to exceed our expectations. We recently settled two complicated catastrophic injury cases. One medical malpractice case involving a spinal abscess settled for 3.75 million and the other involving injuries related to a motor vehicle accident settled for 6.9 million. We consider the artwork provided by MLA to have been invaluable in helping us to successfully conclude these cases.

I highly recommend MLA to anyone seeking high quality, detailed medical legal artwork."

E. Marcus Davis, Esq.
Davis Zipperman, Krischenbaum & Lotito
Atlanta, GA
www.emarcusdavis.com













Awards | Resources | Articles | Become an Affiliate | Free Medical Images | Pregnancy Videos
Credits | Jobs | Help | Medical Legal Blog | Find a Lawyer | Hospital Marketing