Follow us On YouTube Follow us On FaceBook



or
Search Language
Browse
Medical Animations
Medical Animation Titles
Custom Legal Animations
Patient Health Articles
Most Recent Uploads
Body Systems/Regions
Anatomy & Physiology
Diseases & Conditions
Diagnostics & Surgery
Cells & Tissues
Cardiovascular System
Digestive System
Integumentary System
Nervous System
Reproductive System
Respiratory System
Back and Spine
Foot and Ankle
Head and Neck
Hip
Knee
Shoulder
Thorax
Medical Specialties
Cancer
Cardiology
Dentistry
Editorial
Neurology/Neurosurgery
Ob/Gyn
Orthopedics
Pediatrics
Account
Administrator Login

Biology: Chemistry in Biology: 06: Ionic vs. Covalent Bonds - Medical Animation

 

This animation may only be used in support of a single legal proceeding and for no other purpose. Read our License Agreement for details. To license this image for other purposes, click here.

Ready to License?

Item #NSV16029 — Source #1

Order by phone: (800) 338-5954

Biology: Chemistry in Biology: 06: Ionic vs. Covalent Bonds - Medical Animation
MEDICAL ANIMATION TRANSCRIPT: In this video, we will compare ionic and covalent bonds. In order to understand ionic bonds, we need to talk about ions first. Atoms are electrically neutral because they have equal numbers of both positively charged protons and negatively charged electrons. However, an atom can become a charged particle called an ion if it gains or loses electrons. If an atom gains electrons, it acquires more negative charge. As a result, it becomes a negatively charged ion. Conversely, if an atom loses electrons, it loses some of its negative charge and becomes a positively charged ion. The only way to get a positively charged ion is to lose negatively charged electrons. Remember, you can't just add a proton to make a positive ion because changing the number of protons would change it into a different element. Now, let's talk about ionic bonds. Notice that this term contains the word ion. That's because ionic bonds create ions out of electrically neutral atoms by the transfer of one or more valence electrons from one atom to another. Further, electrically neutral atoms of elements whose outer shell is less than half filled with valence electrons tend to donate electrons, while atoms whose outer shell is more than half filled tend to attract electrons. For example, sodium and chlorine atoms are electrically neutral. Chlorine, which only needs one electron to fill its outer shell, strongly attracts sodium's single valence electron. So, these elements react to form a chemical bond, creating sodium chloride. Sodium chloride, otherwise known as table salt, is an example of an ionically bonded compound. This is because the electrically neutral sodium atom became a positively charged ion by losing its valence electron. And chlorine became a negatively charged ion by gaining this electron from sodium. So, how do covalent bonds occur? The simplest substance that contains a covalent bond is a molecule of hydrogen gas also known as H2. A hydrogen atom has only one electron in its outer shell, which for this atom is also the shell nearest the nucleus. This shell can hold a maximum of two electrons. So, atoms of hydrogen tend to pair up and share their electrons so that both atoms have their outer shell filled. As you can see, covalent bonds occur when atoms share pairs of electrons. In this molecule, the hydrogen atoms form a single covalent bond. Another example of a covalently bonded molecule is carbon dioxide, or CO2. From its chemical formula, you know that carbon dioxide contains one carbon atom and two oxygen atoms. Carbon has four valence electrons, and both oxygen atoms have six valence electrons. But all three atoms would need eight electrons to fill their outer shells. So, each oxygen atom shares a pair of electrons with the pair of electrons in carbon. This results in two double covalent bonds where two pairs of electrons are shared between each atom. To summarize, the two main types of chemical bonds are ionic bonds and covalent bonds. In ionic bonds, one or more electrons are transferred from one atom to another. In covalent bonds, one or more pairs of electrons are shared between atoms. [music]

YOU MAY ALSO WANT TO REVIEW THESE ITEMS:
Biology: Chemistry in Biology: 04: Chemical Compounds
Biology: Chemistry in Biology: 04: Chemical Compounds - NSV15015
Medical Animation
Add to my lightbox
Find More Like This
Biology: Chemistry in Biology: 16: Proteins
Biology: Chemistry in Biology: 16: Proteins - NSV16038
Medical Animation
Add to my lightbox
Find More Like This
Biology: Genetics: 10: DNA and RNA - DNA Replication
Biology: Genetics: 10: DNA and RNA - DNA Replication - NSV16037
Medical Animation
Add to my lightbox
Find More Like This
Biology: Biology Basics: 02: Controlled Experiments
Biology: Biology Basics: 02: Controlled Experiments - NSV15012
Medical Animation
Add to my lightbox
Find More Like This
Biology: Biology Basics: 04: Qualitative and Quantitative Data
Biology: Biology Basics: 04: Qualitative and Quantitative Data - NSV16031
Medical Animation
Add to my lightbox
Find More Like This
Biology: Biology Basics: 01: Scientific Method
Biology: Biology Basics: 01: Scientific Method - NSV16035
Medical Animation
Add to my lightbox
Find More Like This
What attorneys say about MLA and The Doe Report:
"Whether it's demonstrating a rotator cuff tear, neck movement a few milliseconds after rear impact, or a proposed lumbar fusion, the Doe Report represents an instant on-line database of medical illustration for health-care and legal professionals.

Illustrations can be purchased 'as is' or modified within hours and sent either electronically or mounted on posterboard. An illustration is worth a thousand words, as juries perk up and look intently to capture concepts that are otherwise too abstract. Start with good illustrations, a clear and direct voice, a view of the jury as 12 medical students on day one of training, and your expert testimony becomes a pleasure, even on cross examination. An experienced trial lawyer should also emphasize these illustrations at the end of trial, as a means of visually reinforcing key concepts covered.

As a treating physician, I also use these accurate illustrations to educate my own patients about their medical conditions. The Doe Report is an invaluable resource, and its authors at MLA have always been a pleasure to work with."

Richard E. Seroussi M.D., M.Sc.
Diplomate, American Boards of Electrodiagnostic Medicine and PM&R
Seattle Spine & Rehabilitation Medicine
www.seattlespine.info

"[I] have come to rely upon the Doe Report and your great staff of illustrators for all my medical malpractice cases. … Please know that I enthusiastically recommend you to all my colleagues.

Frank Rothermel
Bernhardt & Rothermel
"For modern audiences, it is absolutely essential to use medical demonstrative evidence to convey the severity and extent of physical injuries to a jury. Your company's high quality illustrations of our client's discectomy surgery, combined with strong expert testimony, allowed the jury to fully appreciate the significance of our client's injuries.

We are very pleased with a verdict exceeding $297,000.00, far in excess of the $20,000.00 initially offered by the defendant. The medical demonstrative evidence provided by Medical Legal Art was an asset we could not have afforded to have been without."

Todd J. Kenyon
Attorney at Law
Minneapolis, MN

"I would like to thank all of you at Medical Legal Art for all the assistance you provided. It was a result of the excellent, timely work that we were able to conclude the case successfully.

I feel very confident that our paths will cross again."

Fritz G. Faerber
Faerber & Anderson, P.C.
St. Louis, MO













Awards | Resources | Articles | Become an Affiliate | Free Medical Images | Pregnancy Videos
Credits | Jobs | Help | Medical Legal Blog | Find a Lawyer | Hospital Marketing