Follow us On YouTube Follow us On FaceBook



or
Search Language
Browse
Medical Animations
Medical Animation Titles
Custom Legal Animations
Patient Health Articles
Most Recent Uploads
Body Systems/Regions
Anatomy & Physiology
Diseases & Conditions
Diagnostics & Surgery
Cells & Tissues
Cardiovascular System
Digestive System
Integumentary System
Nervous System
Reproductive System
Respiratory System
Back and Spine
Foot and Ankle
Head and Neck
Hip
Knee
Shoulder
Thorax
Medical Specialties
Cancer
Cardiology
Dentistry
Editorial
Neurology/Neurosurgery
Ob/Gyn
Orthopedics
Pediatrics
Account
Administrator Login

Biology: The Cell: 10: Cell Division - Mitosis and Cytokinesis - Medical Animation

 

This animation may only be used in support of a single legal proceeding and for no other purpose. Read our License Agreement for details. To license this image for other purposes, click here.

Ready to License?

Item #NSV15006 — Source #1

Order by phone: (800) 338-5954

Biology: The Cell: 10: Cell Division - Mitosis and Cytokinesis - Medical Animation
MEDICAL ANIMATION TRANSCRIPT: In this lesson, we'll be exploring the M phase of the cell cycle including mitosis and cytokinesis. Let's do a quick review of the cell cycle to see where they fit in. The G1, S, and G2 phases make up interphase, and the M phase represents cell division. Cell division includes division of the nucleus, called mitosis, and division of the cytoplasm, called cytokinesis. Mitosis is further broken down into four phases: prophase, metaphase, anaphase, and telophase. Prophase is the longest phase of mitosis. Prophase is when chromatin begins to condense into the shape of chromosomes, and the nucleolus disappears. The previously replicated DNA coils tightly into sister chromatids. For the first time, you see individual chromosomes. In the center of each chromosome, a centromere attaches the sister chromatids together. Meanwhile, in the cytoplasm, microtubules known as spindle fibers begin to fan out from two sets of paired structures called centrioles. The spindle fibers elongate as the centrioles begin moving to opposite sides, or poles, of the cell. While this is happening, the nuclear membrane surrounding the nucleus disappears. Now that chromosomes are no longer separated from the cytoplasm, the opposite ends of the spindle fibers can attach to the centromeres. Next, the cell enters metaphase. The centrioles complete their movement to the poles of the cell while the spindle fibers line up the chromosomes along the equator of the cell. The end-to-end alignment of chromosomes results in a sister chromatid on either side of the equator. Anaphase follows metaphase. During anaphase, spindle fibers separate the sister chromatids at their centromere. Once separated from each other, each chromatid is called a chromosome. The single-stranded chromosomes form a V shape as the spindle fibers shorten and drag them through the gel-like cytoplasm. The chromosomes move to opposite poles of the cell toward their centrioles. It's common to confuse centrioles with centromeres which connect chromatids. Remember, centrioles are at the poles. Telophase is the final stage of mitosis. In telophase, a nuclear membrane re-forms around each set of chromosomes. Then the chromosomes spread out into chromatin, and the nucleolus becomes visible once again. Mitosis, the division of the nucleus, is now complete. The final step of the M phase is cytokinesis, the division of the cytoplasm. In animal cells, cytokinesis occurs through the inward movement of the cell membrane. This progressively pinches the cytoplasm until two identical daughter cells form. In contrast, plant cells can't pinch in two because they have a rigid cell wall surrounding their cell membrane. Instead, cell wall material assembles along the equator forming a structure called the cell plate. The cell plate grows until it joins with the existing cell membrane, separating the two halves of the cell into daughter cells. Over time, new cell walls form between the two daughter cells. Here are the key points to remember. The M phase is the fourth and final phase of the cell cycle. During the M phase, cell division occurs through two processes: mitosis, when the nucleus divides, and cytokinesis, when the cytoplasm divides. Mitosis has four phases. During prophase, chromatin condenses into chromosomes, spindle fibers form, and the nucleolus and nuclear membrane disappear. During metaphase, spindle fibers align the chromosomes along the cell equator. In anaphase, the spindle fibers separate sister chromatids into two separate groups of chromosomes, pulling them toward the poles. And in telophase, the nucleolus and nuclear membrane re-form. The chromosomes disperse into chromatin. Cytokinesis is division of the cytoplasm. The M phase is complete after cytokinesis occurs. The M phase of the cell cycle always results in two daughter cells. Both of these daughter cells are identical to each other and identical to the original cell that underwent mitosis. [music]

YOU MAY ALSO WANT TO REVIEW THESE ITEMS:
Biology: The Cell: 14: Cell Division - Mitosis vs. Meiosis
Biology: The Cell: 14: Cell Division - Mitosis vs. Meiosis - NSV15013
Medical Animation
Add to my lightbox
Find More Like This
Biology: The Cell: 09: Cell Division - The Cell Cycle
Biology: The Cell: 09: Cell Division - The Cell Cycle - NSV15004
Medical Animation
Add to my lightbox
Find More Like This
Biology: The Cell: 07: Cell Transport - Cell Transport and Solutions
Biology: The Cell: 07: Cell Transport - Cell Transport and Solutions - NSV15018
Medical Animation
Add to my lightbox
Find More Like This
Biology: The Cell: 08: Cell Division - Overview of Cell Division
Biology: The Cell: 08: Cell Division - Overview of Cell Division - NSV15003
Medical Animation
Add to my lightbox
Find More Like This
Biology: The Cell: 11: Cell Division - Haploid vs. Diploid
Biology: The Cell: 11: Cell Division - Haploid vs. Diploid - NSV15017
Medical Animation
Add to my lightbox
Find More Like This
Biology: The Cell: 13: Cell Division - Meiosis
Biology: The Cell: 13: Cell Division - Meiosis - NSV16019
Medical Animation
Add to my lightbox
Find More Like This
Biology: The Cell: 12: Cell Division - Overview of Meiosis
Biology: The Cell: 12: Cell Division - Overview of Meiosis - NSV15016
Medical Animation
Add to my lightbox
Find More Like This
Biology: The Cell: 06: Cell Transport - Active Transport
Biology: The Cell: 06: Cell Transport - Active Transport - NSV15009
Medical Animation
Add to my lightbox
Find More Like This
What attorneys say about MLA and The Doe Report:
"A few words about The Doe Report: recently in a brachial plexus injury case, we used an image from The Doe Report to demonstrate the injury. We downloaded the PDF file image, and were amazed at the quality. The hard copies that you sent were even more clear. As well, we could not have been happier when you customized the image and reversed the injury from the left shoulder to the right shoulder, which is where our client's injury was.

The speed and cost-effectiveness of the product made it the perfect tool for our purposes. We will use The Doe Report again in future cases."

Andrew Needle
Needle Gallagher & Ellenberg, P.A.
Miami, FL

"Our practice involves medical negligence cases exclusively. We have six attorneys and one physician on staff. We have used Medical Legal Art's staff for every one of our cases over the past 12 years and have found their services to be extraordinary. The transformation of medical records into powerful graphic images has without fail been handled expertly, expeditiously and effectively translating into superb results for our clients, both in the courtroom and in settlement. Every case can benefit from their excellent work and we unqualifiedly recommend their services. They are the best!"

Chris Otorowski
Morrow and Otorowski
Bainbridge Island, Washington
www.medilaw.com

"Whether it's demonstrating a rotator cuff tear, neck movement a few milliseconds after rear impact, or a proposed lumbar fusion, the Doe Report represents an instant on-line database of medical illustration for health-care and legal professionals.

Illustrations can be purchased 'as is' or modified within hours and sent either electronically or mounted on posterboard. An illustration is worth a thousand words, as juries perk up and look intently to capture concepts that are otherwise too abstract. Start with good illustrations, a clear and direct voice, a view of the jury as 12 medical students on day one of training, and your expert testimony becomes a pleasure, even on cross examination. An experienced trial lawyer should also emphasize these illustrations at the end of trial, as a means of visually reinforcing key concepts covered.

As a treating physician, I also use these accurate illustrations to educate my own patients about their medical conditions. The Doe Report is an invaluable resource, and its authors at MLA have always been a pleasure to work with."

Richard E. Seroussi M.D., M.Sc.
Diplomate, American Boards of Electrodiagnostic Medicine and PM&R
Seattle Spine & Rehabilitation Medicine
www.seattlespine.info

"I just wanted to let you know that after several days on trial, I settled [my client's] construction accident case for $4.5 million. Immediately after the jury was discharged, I spoke with several jurors who told me that they really appreciated the medical illustrations for their clarity in dealing with [my client's] devastating injuries. They also expressed their gratitude in being able to read from a distance all of the notations without difficulty. Obviously, the boards were visually persuasive. I am certain that this contributed to our successful result."

Michael Gunzburg, Esq.
Attorney at Law.
New York, NY













Awards | Resources | Articles | Become an Affiliate | Free Medical Images | Pregnancy Videos
Credits | Jobs | Help | Medical Legal Blog | Find a Lawyer | Hospital Marketing