Follow us On YouTube Follow us On FaceBook



or
Search Language
Browse
Medical Animations
Medical Animation Titles
Custom Legal Animations
Patient Health Articles
Most Recent Uploads
Body Systems/Regions
Anatomy & Physiology
Diseases & Conditions
Diagnostics & Surgery
Cells & Tissues
Cardiovascular System
Digestive System
Integumentary System
Nervous System
Reproductive System
Respiratory System
Back and Spine
Foot and Ankle
Head and Neck
Hip
Knee
Shoulder
Thorax
Medical Specialties
Cancer
Cardiology
Dentistry
Editorial
Neurology/Neurosurgery
Ob/Gyn
Orthopedics
Pediatrics
Account
Administrator Login

Biology: Biology Basics: 02: Controlled Experiments - Medical Animation

 

This animation may only be used in support of a single legal proceeding and for no other purpose. Read our License Agreement for details. To license this image for other purposes, click here.

Ready to License?

Item #NSV15012 — Source #1

Order by phone: (800) 338-5954

Biology: Biology Basics: 02: Controlled Experiments - Medical Animation
MEDICAL ANIMATION TRANSCRIPT: What is a controlled experiment, and why would you want to do one? Maybe you have an idea that you think might explain a situation. This is called a scientific hypothesis. How could you find out if your hypothesis is correct? Well, you'd set up a controlled experiment in which you control, or keep constant, all the factors, known as variables, except for the one you want to test. Let's design a controlled experiment to test a fertilizer which claims it makes plants grow bigger, lusher, and perhaps produce more flowers, fruit or vegetables. If you wanted to see if the fertilizer works, how would you set up a controlled experiment to test this claim? First, you would get two plants of the same species. Let's call them Plant A and Plant B. Everything about the plants should be exactly the same, including their size, health, and age. Next, you would put each plant in identical pots with the same amount of the same kind of dirt or soil. You would water them both the same amount at the same times. You would also put the plants next to each other in the same place, such a window sill, so that they're boh exposed to the same amount of sunlight and kept at the same temperature. It's important that everything is the same, because the purpose of your experiment is to find out whether or not the fertilizer works. So what would be different? In this experiment, the only difference is that only plant A would get the fertilizer. Now remember, your hypothesis is that Plant A, which is getting fertilizer, will grow bigger compared to Plant B, which isn't getting any fertilizer. How would you know whether your hypothesis is correct? You'd know because you'd regularly measure the plants during the course of the experiment, for example, once a week for a period of three months. You would record these measurements throughout the experiment. These measurements are your data. At the end of the experiment, you would look at your data and compare the measurements of Plant A, which got fertilizer, to Plant B, which didn't get fertilizer. As you can see, Plant A did grow bigger than Plant B. So, it appears that the results of this controlled experiment support your hypothesis. So, let's recap the elements of experimental design. What were you testing? You were testing to see whether or not fertilizer promotes plant growth. What was your hypothesis? The hypothesis was that the plant that got fertilizer would get bigger than the plant that didn't get fertilizer. What were you measuring? You measured the growth of both plants. How do you know if the results of the experiment support your hypothesis? If your hypothesis is true, you would have seen that the plant that got the fertilizer actually did get bigger than the plant that didn't get any fertilizer. The variable you were testing, in this case, the fertilizer, is called the independent variable. And the thing you were observing, measuring, and expecting to change because of that independent variable was plant growth. In this experiment, plant growth is the dependent variable. We'll go over independent and dependent variables in more detail in another video. [music]

YOU MAY ALSO WANT TO REVIEW THESE ITEMS:
Biology: Biology Basics: 04: Qualitative and Quantitative Data
Biology: Biology Basics: 04: Qualitative and Quantitative Data - NSV16031
Medical Animation
Add to my lightbox
Find More Like This
High Blood Pressure
High Blood Pressure - ANH13100
Medical Animation
Add to my lightbox
Find More Like This
Biology: Chemistry in Biology: 04: Chemical Compounds
Biology: Chemistry in Biology: 04: Chemical Compounds - NSV15015
Medical Animation
Add to my lightbox
Find More Like This
Biology: Chemistry in Biology: 16: Proteins
Biology: Chemistry in Biology: 16: Proteins - NSV16038
Medical Animation
Add to my lightbox
Find More Like This
Biology: Genetics: 10: DNA and RNA - DNA Replication
Biology: Genetics: 10: DNA and RNA - DNA Replication - NSV16037
Medical Animation
Add to my lightbox
Find More Like This
Biology: Biology Basics: 01: Scientific Method
Biology: Biology Basics: 01: Scientific Method - NSV16035
Medical Animation
Add to my lightbox
Find More Like This
What attorneys say about MLA and The Doe Report:
"For modern audiences, it is absolutely essential to use medical demonstrative evidence to convey the severity and extent of physical injuries to a jury. Your company's high quality illustrations of our client's discectomy surgery, combined with strong expert testimony, allowed the jury to fully appreciate the significance of our client's injuries.

We are very pleased with a verdict exceeding $297,000.00, far in excess of the $20,000.00 initially offered by the defendant. The medical demonstrative evidence provided by Medical Legal Art was an asset we could not have afforded to have been without."

Todd J. Kenyon
Attorney at Law
Minneapolis, MN

"Our firm was able to settle our case at an all day mediation yesterday and I am confident that the detail and overall appearance of the medical illustrations significantly contributed to the settlement. When we require medical illustrations in the future, I will be sure to contact [MLA]."

Noel Turner, III
Burts, Turner, Rhodes & Thompson
Spartanburg, SC

"I wanted to take some time out to let you know what a wonderful job you did with the 'collapsed lung/fractured rib' illustrations. They were both detailed and accurate. My medical expert was comfortable working with them and he spent at least an hour explaining to the jury the anatomy of the lungs, the ribs and the injuries depicted in the illustrations. Needless to say, the jury was riveted to the doctor during his testimony.

The jury returned a verdict for $800,000.00 and I'm sure we would not have done so well if not for the visualizations we were able to put forth with your assistance. Lastly, my special thanks to Alice [Senior Medical Illustrator] who stayed late on Friday night and patiently dealt with my last minute revisions."

Daniel J. Costello
Proner & Proner
New York, NY

"It is my experience that it's much more effective to show a jury what happened than simply to tell a jury what happened. In this day and age where people are used to getting information visually, through television and other visual media, I would be at a disadvantage using only words.

I teach a Litigation Process class at the University of Baltimore Law Schooland use [Medical Legal Art's] animation in my class. Students always saythat they never really understood what happened to [to my client] until theysaw the animation.

Animations are powerful communication tools that should be used wheneverpossible to persuade juries."

Andrew G. Slutkin
Snyder Slutkin & Kopec
Baltimore, MD












Awards | Resources | Articles | Become an Affiliate | Free Medical Images | Pregnancy Videos
Credits | Jobs | Help | Medical Legal Blog | Find a Lawyer | Hospital Marketing