Follow us On YouTube Follow us On FaceBook



or
Search Language
Browse
Medical Animations
Medical Animation Titles
Custom Legal Animations
Patient Health Articles
Most Recent Uploads
Body Systems/Regions
Anatomy & Physiology
Diseases & Conditions
Diagnostics & Surgery
Cells & Tissues
Cardiovascular System
Digestive System
Integumentary System
Nervous System
Reproductive System
Respiratory System
Back and Spine
Foot and Ankle
Head and Neck
Hip
Knee
Shoulder
Thorax
Medical Specialties
Cancer
Cardiology
Dentistry
Editorial
Neurology/Neurosurgery
Ob/Gyn
Orthopedics
Pediatrics
Account
Administrator Login

Biology: Biology Basics: 02: Controlled Experiments - Medical Animation

 

This animation may only be used in support of a single legal proceeding and for no other purpose. Read our License Agreement for details. To license this image for other purposes, click here.

Ready to License?

Item #NSV15012 — Source #1

Order by phone: (800) 338-5954

Biology: Biology Basics: 02: Controlled Experiments - Medical Animation
MEDICAL ANIMATION TRANSCRIPT: What is a controlled experiment, and why would you want to do one? Maybe you have an idea that you think might explain a situation. This is called a scientific hypothesis. How could you find out if your hypothesis is correct? Well, you'd set up a controlled experiment in which you control, or keep constant, all the factors, known as variables, except for the one you want to test. Let's design a controlled experiment to test a fertilizer which claims it makes plants grow bigger, lusher, and perhaps produce more flowers, fruit or vegetables. If you wanted to see if the fertilizer works, how would you set up a controlled experiment to test this claim? First, you would get two plants of the same species. Let's call them Plant A and Plant B. Everything about the plants should be exactly the same, including their size, health, and age. Next, you would put each plant in identical pots with the same amount of the same kind of dirt or soil. You would water them both the same amount at the same times. You would also put the plants next to each other in the same place, such a window sill, so that they're boh exposed to the same amount of sunlight and kept at the same temperature. It's important that everything is the same, because the purpose of your experiment is to find out whether or not the fertilizer works. So what would be different? In this experiment, the only difference is that only plant A would get the fertilizer. Now remember, your hypothesis is that Plant A, which is getting fertilizer, will grow bigger compared to Plant B, which isn't getting any fertilizer. How would you know whether your hypothesis is correct? You'd know because you'd regularly measure the plants during the course of the experiment, for example, once a week for a period of three months. You would record these measurements throughout the experiment. These measurements are your data. At the end of the experiment, you would look at your data and compare the measurements of Plant A, which got fertilizer, to Plant B, which didn't get fertilizer. As you can see, Plant A did grow bigger than Plant B. So, it appears that the results of this controlled experiment support your hypothesis. So, let's recap the elements of experimental design. What were you testing? You were testing to see whether or not fertilizer promotes plant growth. What was your hypothesis? The hypothesis was that the plant that got fertilizer would get bigger than the plant that didn't get fertilizer. What were you measuring? You measured the growth of both plants. How do you know if the results of the experiment support your hypothesis? If your hypothesis is true, you would have seen that the plant that got the fertilizer actually did get bigger than the plant that didn't get any fertilizer. The variable you were testing, in this case, the fertilizer, is called the independent variable. And the thing you were observing, measuring, and expecting to change because of that independent variable was plant growth. In this experiment, plant growth is the dependent variable. We'll go over independent and dependent variables in more detail in another video. [music]

YOU MAY ALSO WANT TO REVIEW THESE ITEMS:
Biology: Biology Basics: 04: Qualitative and Quantitative Data
Biology: Biology Basics: 04: Qualitative and Quantitative Data - NSV16031
Medical Animation
Add to my lightbox
Find More Like This
High Blood Pressure
High Blood Pressure - ANH13100
Medical Animation
Add to my lightbox
Find More Like This
Biology: Chemistry in Biology: 04: Chemical Compounds
Biology: Chemistry in Biology: 04: Chemical Compounds - NSV15015
Medical Animation
Add to my lightbox
Find More Like This
Biology: Chemistry in Biology: 16: Proteins
Biology: Chemistry in Biology: 16: Proteins - NSV16038
Medical Animation
Add to my lightbox
Find More Like This
Biology: Genetics: 10: DNA and RNA - DNA Replication
Biology: Genetics: 10: DNA and RNA - DNA Replication - NSV16037
Medical Animation
Add to my lightbox
Find More Like This
Biology: Biology Basics: 01: Scientific Method
Biology: Biology Basics: 01: Scientific Method - NSV16035
Medical Animation
Add to my lightbox
Find More Like This
What attorneys say about MLA and The Doe Report:
"The Doe Report's Do-It-Yourself Exhibits program enables easy customization of complex medical exhibits at a reasonable expense and in a timely manner. Practically speaking, custom medical exhibits are no longer an unthinkable luxury, but a routine necessity."

Jack S. Cohen
Levy, Angstreich, Finney, Baldante & Coren
Philadelphia, PA

"I have a medical illustration created by Medical Legal Art at the beginning of every case to tell the client's story, usually before I depose the defendant doctor. The work product and cost-efficiency are outstanding. It is a situation where, as a trial lawyer, I don't leave home without it."

Rockne Onstad
Attorney at Law
Austin, TX

"Medical illustrations are essential during trial for any medical malpractice case. The people at MLA have the uncanny ability of creating medical illustrations that simplify the most complex of medical concepts and human anatomy to a lay audience. The exhibits of MLA allow experts to easily describe complex concepts and human anatomy in a manner that could not be done otherwise.

In addition, their custom illustrations show in great detail the extent of injuries suffered and the devastating effects they have had on the client's anatomy. These custom illustration can show, side by side, the body before and after a catastrophic injury. The effect of this juxtaposition is unmatched by any testimony that can be adduced at the time of trial.

Even jurors after trial have commented on the ease with which they grasp medical concepts and anatomy once the MLA exhibits were introduced and used by my experts. Even judges who have "seen it all" are thoroughly impressed by the detail and sophistication of the illustrations.

I would not want to try a case without them."

Lambros Y. Lambrou
McHUGH & LAMBROU, LLP
New York, NY

"Medical illustrations are essential evidence in personal injury litigation and MLA is simply the best I've found at producing high-quality illustrations. Your illustrators are not only first-class artists, but creative and responsive. Your turn around time is as good as it gets. My clients have won over $60 million in jury verdicts and I can't recall a case which did not include one of your exhibits. On behalf of those clients, thanks and keep up the great work!"

Kenneth J. Allen
Allen Law Firm
Valparaiso, IN
www.kenallenlaw.com













Awards | Resources | Articles | Become an Affiliate | Free Medical Images | Pregnancy Videos
Credits | Jobs | Help | Medical Legal Blog | Find a Lawyer | Hospital Marketing