Follow us On YouTube Follow us On FaceBook



or
Search Language
Browse
Medical Animations
Medical Animation Titles
Custom Legal Animations
Patient Health Articles
Most Recent Uploads
Body Systems/Regions
Anatomy & Physiology
Diseases & Conditions
Diagnostics & Surgery
Cells & Tissues
Cardiovascular System
Digestive System
Integumentary System
Nervous System
Reproductive System
Respiratory System
Back and Spine
Foot and Ankle
Head and Neck
Hip
Knee
Shoulder
Thorax
Medical Specialties
Cancer
Cardiology
Dentistry
Editorial
Neurology/Neurosurgery
Ob/Gyn
Orthopedics
Pediatrics
Account
Administrator Login

Biology: The Cell: 07: Cell Transport - Cell Transport and Solutions - Medical Animation

 

This animation may only be used in support of a single legal proceeding and for no other purpose. Read our License Agreement for details. To license this image for other purposes, click here.

Ready to License?

Item #NSV15018 — Source #1

Order by phone: (800) 338-5954

Biology: The Cell: 07: Cell Transport - Cell Transport and Solutions - Medical Animation
MEDICAL ANIMATION TRANSCRIPT: In this video, we'll discuss cell transport and solutions. The concentration gradient of extracellular solutions affects the transport of substances through the cell membrane. What can happen in this process? Well, cells may be surrounded by solutions with different particle concentrations, both in a lab as well as inside a living organism. So we need to know how cells will respond. Compared to the solution inside a cell, a solution outside the cell may be hypertonic, isotonic, or hypotonic. We'll describe hypertonic solutions using this beaker of water with dissolved salt, and a rather large cell submerged in it. To demonstrate water movement in and out of cells, we'll use simple numbers to illustrate concepts. Remember, the cell cytoplasm is mostly water as well. In this example, let's say the cytoplasm inside the cell is a solution containing 10% salt, which means the other 90% is water. Keep in mind percentages of substances within the cell must equal 100%. The percentages of solute and solvent in the beaker must also add up to 100%. However, the solution in the beaker is a different concentration from the solution inside the cell. It's 20% salt and 80% water. So you can see that there's a greater concentration of water inside the cell than outside, 90% compared to 80%. We call a solution hypertonic when its concentration of water is lower than inside the cell and its concentration of solute is higher than inside the cell. As a result, water molecules diffuse out of the cell through osmosis, causing the cell to shrivel a bit. Remember, osmosis means diffusion of water. If the solution's water concentration was significantly lower, the cell could shrivel to the point of imploding. For red blood cells in hypertonic solutions, the shriveling from osmotic water loss is called crenation. Let's look at an example of plant cells in a hypertonic solution. Normally, turgor pressure, which is the water pressure in a plant cell's central vacuole, helps support the cell wall and overall plant shape. When water leaves plant cells by osmosis, the cell membrane and its contents shrink away from the rigid cell wall, and turgor pressure decreases. This is called plasmolysis. Plasmolysis causes a plant to wilt. Let's look at another container, this time with a cell floating in an isotonic solution. Sometimes, the solution outside the cell has about the same concentration gradient as the concentration gradient inside the cell. Once again, in this example, the solution inside the cell is 90% water with 10% salt, but this time, the surrounding solution is also 90% water with 10% salt dissolved. We call a solution isotonic when its concentrations of water and solute are the same as inside the cell. But this doesn't mean that there is no movement. In an isotonic solution, the rate of water molecules entering the cell is equal to the rate of water molecules exiting the cell. The amount of water molecules going in equals the amount of water molecules going out. That's why you see the arrows pointing in two different directions. In an isotonic solution, the cell doesn't shrink or swell. It stays exactly the same size. A third possibility is a solution outside the cell with a higher concentration of water than the solution inside the cell. In this example, the solution inside the cell has 20% salt. So that means the remainder is 80% water, but the cell has been placed in a beaker that only has a 10% salt solution. Doing the math, we can see that the solution surrounding the cell is 90% water, which means there's a greater concentration of water outside the cell than inside. We call a solution hypotonic when its concentration of water is higher than inside the cell, and its concentration of solute is lower than inside the cell. So by osmosis, the water molecules will move passively into the cell until a state of equilibrium is reached. Hypotonic solutions cause a cell to swell up with water. If the water concentration outside the cell is high enough, the cell can swell to the point of bursting. This is called cytolysis. Cytolysis in red blood cells is called hemolysis. Cytolysis doesn't happen in plant cells because the rigid cell wall prevents the cells from bursting. Here's a little trick to remember that hypotonic solutions cause a cell to swell rather than shrivel. When you think of hypo, think of a big, swollen hippopotamus or hippo for short. So to recap, we can have solutions that are hypertonic, isotonic, or hypotonic with respect to the cell. In an isotonic solution, the water concentration inside and outside the cell stays about the same. The water concentration stays the same because the concentration of solute is the same. As a result, there's equal movement of water in and out of the cell. So the size of the cell stays the same. Here's a hypotonic solution. Remember, this means that there is a lower concentration of solute outside the cell compared to inside the cell. This causes water molecules to diffuse into the cell. Remember, when diffusion happens with water, we call that osmosis. This causes the cell to swell. If the concentration difference is high enough, cytolysis may occur. Finally, in a hypertonic solution, the solute concentration outside the cell is higher compared to inside the cell. So through osmosis, water molecules diffuse out of the cell. This causes the cell to shrivel up, and it can even implode or collapse if enough water leaves. In plants, this cell collapse is called plasmolysis. [music]

YOU MAY ALSO WANT TO REVIEW THESE ITEMS:
Histopathology of malaria pigment in brain capillaries
Histopathology of malaria pigment in brain capillaries - 07G0022lores
Medical Illustration
Add to my lightbox
Find More Like This
Biology: The Cell: 03: Structure - Structure of the Cell Membrane
Biology: The Cell: 03: Structure - Structure of the Cell Membrane - NSV15005
Medical Animation
Add to my lightbox
Find More Like This
Biology: The Cell: 01: Structure - Overview of Cell Structure
Biology: The Cell: 01: Structure - Overview of Cell Structure - NSV15001
Medical Animation
Add to my lightbox
Find More Like This
Biology: The Cell: 05: Cell Transport - Passive Transport
Biology: The Cell: 05: Cell Transport - Passive Transport - NSV15008
Medical Animation
Add to my lightbox
Find More Like This
Biology: The Cell: 06: Cell Transport - Active Transport
Biology: The Cell: 06: Cell Transport - Active Transport - NSV15009
Medical Animation
Add to my lightbox
Find More Like This
Biology: The Cell: 04: Cell Transport - Overview of Cell Transport
Biology: The Cell: 04: Cell Transport - Overview of Cell Transport - NSV15007
Medical Animation
Add to my lightbox
Find More Like This
What attorneys say about MLA and The Doe Report:
"Thank you for the wonderful illustrations. The case resulted in a defense verdict last Friday. I know [our medical expert witness] presented some challenges for you and I appreciate how you were able to work with him."

Robert F. Donnelly
Goodman Allen & Filetti, PLLC
Richmond, VA

"You and your company are wonderful. Your service, turnaround time, quality and price were better than I could have asked for. Please add me to your long list of satisfied customers."

Robert F. Linton, Jr.
Linton & Hirshman
Cleveland, OH

"For us, the defining feature of effective demonstrative evidence is whether, by itself, the piece will tell the story of the case. Medical legal Art provides our firm with illustrations and animations that are clear and persuasive. Their exhibits tell the story in a way that allows the jury to understand a very complex subject, very quickly."

James D. Horwitz
Koskoff, Koskoff & Bieder, P.C.
Bridgeport, CT

"Medical illustrations are essential evidence in personal injury litigation and MLA is simply the best I've found at producing high-quality illustrations. Your illustrators are not only first-class artists, but creative and responsive. Your turn around time is as good as it gets. My clients have won over $60 million in jury verdicts and I can't recall a case which did not include one of your exhibits. On behalf of those clients, thanks and keep up the great work!"

Kenneth J. Allen
Allen Law Firm
Valparaiso, IN
www.kenallenlaw.com













Awards | Resources | Articles | Become an Affiliate | Free Medical Images | Pregnancy Videos
Credits | Jobs | Help | Medical Legal Blog | Find a Lawyer | Hospital Marketing