Follow us On YouTube Follow us On FaceBook



or
Search Language
Browse
Medical Animations
Medical Animation Titles
Custom Legal Animations
Patient Health Articles
Most Recent Uploads
Body Systems/Regions
Anatomy & Physiology
Diseases & Conditions
Diagnostics & Surgery
Cells & Tissues
Cardiovascular System
Digestive System
Integumentary System
Nervous System
Reproductive System
Respiratory System
Back and Spine
Foot and Ankle
Head and Neck
Hip
Knee
Shoulder
Thorax
Medical Specialties
Cancer
Cardiology
Dentistry
Editorial
Neurology/Neurosurgery
Ob/Gyn
Orthopedics
Pediatrics
Account
Administrator Login

Biology: Chemistry in Biology: 15: Lipids - Medical Animation

 

This animation may only be used in support of a single legal proceeding and for no other purpose. Read our License Agreement for details. To license this image for other purposes, click here.

Ready to License?

Item #NSV16036 — Source #1

Order by phone: (800) 338-5954

Biology: Chemistry in Biology: 15: Lipids - Medical Animation
MEDICAL ANIMATION TRANSCRIPT: Today, we're going to talk about lipids. Lipids are an integral part of every cell membrane in every living organism. Looking closer, you can see that lipids are part of the phospholipid membrane that is the boundary of every single cell. Most people think of lipids as fats, such as the fat in your body. Fats provide long-term energy storage and insulation in living organisms. But fats are just one type of lipid. Oils, waxes, and steroids are also types of lipids. Examples of steroids include cholesterol and hormones such as testosterone, which is produced in the testicles, and estrogen, which is produced in the ovaries. A common feature of all lipids is that they don't dissolve in water. So what makes something a lipid? All lipids are organic macromolecules. This means lipids are large molecules containing the element carbon. Lipids also contain hydrogen and oxygen. Organic macromolecules, such as lipids are formed by many units called monomers that are chemically bonded together. In lipids, the typical monomer is something called a fatty acid. A fatty acid contains a chain of carbon atoms attached to each other. Hydrogen atoms are also attached to these carbon atoms. You may recall that carbon can form up to four covalent bonds with other atoms. When each carbon atom forms two single bonds with adjacent carbon atoms and another two single bonds with adjacent hydrogen atoms, we call this fatty acid saturated. This means the fatty acid is saturated with all the hydrogen atoms it can possibly contain. Because of this structure, saturated fatty acids are straight molecules that can pack tightly together. As a result, saturated fats are usually solid at room temperature. Examples of saturated fats include lard and butter. In contrast, unsaturated fats are usually liquid at room temperature. These include things like vegetable oil and olive oil. So why are unsaturated fats liquid at room temperature? Well, unsaturated fatty acids have one or more double covalent bonds between carbon atoms. This means the unsaturated fatty acid has gaps in the hydrogen saturation. The carbon double bonds form kinks in the fatty acid, which prevent the molecules from packing together tightly. As a result, the more loosely packed molecules form a liquid instead of a solid at room temperature. Here's a tip to help you remember which type of fat is solid or liquid. Use the letter S at the beginning of the word saturated for solid at room temperature. Now that we've talked about fatty acids as lipid monomers, what is a lipid polymer? A lipid polymer, called a triglyceride, is formed when three fatty acids bond to a glycerol molecule. A triglyceride is saturated if it contains only saturated fatty acids. And a triglyceride is unsaturated if it contains any unsaturated fatty acids. To sum up, all living organisms use lipids in all of their cell membranes, as well as for long-term energy storage and insulation and in hormone formation. Lipids are organic macromolecules containing mostly carbon atoms, as well as hydrogen and oxygen atoms. Lipid monomers are fatty acids. Saturated fatty acids are saturated with hydrogen because their carbon atoms form only single bonds. As a result, saturated fats are solid at room temperature. In contrast, unsaturated fatty acids have gaps in their hydrogen saturation, because their carbon atoms form one or more double bonds. As a result, unsaturated fats are liquid at room temperature. Lipid polymers are called triglycerides. Saturated triglycerides contain only saturated fatty acids. Triglycerides are called unsaturated if they contain any unsaturated fatty acids.

YOU MAY ALSO WANT TO REVIEW THESE ITEMS:
Biology: Chemistry in Biology: 10: Acids and Bases
Biology: Chemistry in Biology: 10: Acids and Bases - NSV16022
Medical Animation
Add to my lightbox
Find More Like This
Biology: Chemistry in Biology: 11: pH
Biology: Chemistry in Biology: 11: pH - NSV16024
Medical Animation
Add to my lightbox
Find More Like This
Biology: Chemistry in Biology: 01: Atoms
Biology: Chemistry in Biology: 01: Atoms - NSV15010
Medical Animation
Add to my lightbox
Find More Like This
Biology: Chemistry in Biology: 12: Catalysts and Enzymes
Biology: Chemistry in Biology: 12: Catalysts and Enzymes - NSV16023
Medical Animation
Add to my lightbox
Find More Like This
Biology: Chemistry in Biology: 05: Overview of Chemical Bonds
Biology: Chemistry in Biology: 05: Overview of Chemical Bonds - NSV16020
Medical Animation
Add to my lightbox
Find More Like This
Biology: Chemistry in Biology: 17: Nucleic Acids
Biology: Chemistry in Biology: 17: Nucleic Acids - NSV16033
Medical Animation
Add to my lightbox
Find More Like This
What attorneys say about MLA and The Doe Report:
"I have a medical illustration created by Medical Legal Art at the beginning of every case to tell the client's story, usually before I depose the defendant doctor. The work product and cost-efficiency are outstanding. It is a situation where, as a trial lawyer, I don't leave home without it."

Rockne Onstad
Attorney at Law
Austin, TX

"It is my experience that it's much more effective to show a jury what happened than simply to tell a jury what happened. In this day and age where people are used to getting information visually, through television and other visual media, I would be at a disadvantage using only words.

I teach a Litigation Process class at the University of Baltimore Law Schooland use [Medical Legal Art's] animation in my class. Students always saythat they never really understood what happened to [to my client] until theysaw the animation.

Animations are powerful communication tools that should be used wheneverpossible to persuade juries."

Andrew G. Slutkin
Snyder Slutkin & Kopec
Baltimore, MD
"We got a defense verdict yesterday! Your exhibit was extremely helpful in showing the jury how unlikely it is to damage all four of the nerve branches which control the sense of taste."

Karen M. Talbot
Silverman Bernheim & Vogel, P.C.
Philadeplphia, PA

"I wanted to take some time out to let you know what a wonderful job you did with the 'collapsed lung/fractured rib' illustrations. They were both detailed and accurate. My medical expert was comfortable working with them and he spent at least an hour explaining to the jury the anatomy of the lungs, the ribs and the injuries depicted in the illustrations. Needless to say, the jury was riveted to the doctor during his testimony.

The jury returned a verdict for $800,000.00 and I'm sure we would not have done so well if not for the visualizations we were able to put forth with your assistance. Lastly, my special thanks to Alice [Senior Medical Illustrator] who stayed late on Friday night and patiently dealt with my last minute revisions."

Daniel J. Costello
Proner & Proner
New York, NY













Awards | Resources | Articles | Become an Affiliate | Free Medical Images | Pregnancy Videos
Credits | Jobs | Help | Medical Legal Blog | Find a Lawyer | Hospital Marketing